天津语音交互声学回声AEC算法

时间:2023年04月23日 来源:

    非线性声学回声消除的技术难点我从6个不同的维度比较了线性的和非线性这两种回声消除问题。首先个维度,系统传递函数。在线性系统里面,我们认为系统传递函数是一个缓慢时变的系统,我们可以通过自适应滤波的方式去逼近这个传递函数,来有效抑制回声。而在非线性系统里面,系统传递函数通常是快变、突变的,我们如果用线性的方法去逼近的话,会出现滤波器的更新速度,跟不上系统传递函数变化的速度,就会导致声学回声消除不理想。第二个维度是优化模型,在线性里面我们是有一套非常完备的线性优化模型,从目标函数的构建到系统优化问题的求解,整个脉络是很清晰的。而在非线性的系统里面,目前是缺少一种有效的模型来对它进行支撑的。接下来的四个维度对应4个问题,它们是线性回声消除领域普遍存在的4个难点问题。这些问题在非线性领域也同样存在。比如强混响问题,我们如果在一个小型会议室里开视频会议。那么声音会经过多次墙壁反射,带来很强的混响,混响的拖尾时间会很长。如果想抑制这样的强混响回声,就需要把线性滤波器的长度加长。这样会带来一个新的问题:按照Widrow的自适应滤波理论,滤波器的长度越长,其收敛速度越慢,同时权噪声越大。 声学回声的功能怎么样?天津语音交互声学回声AEC算法

天津语音交互声学回声AEC算法,声学回声

    我们还希望它在一个短时的观测时间窗的尺度里面也是比较好的,即局部比较好,所以在数学期望内部,我们又对误差进行了短时积分。这个优化准则跟传统的线性自适应滤波器是有本质区别的,因为传统的线性自适应滤波器基于小均方误差准则,它只是在统计意义上比较好,没有局部比较好约束。首先来求解这里的Wl,就是线性滤波器。主要求解方法是,假设Wn就是非线性滤波器是比较好解,把这个比较好解代入到前面的优化方程里,就会得到上面简化之后的优化目标函数。在这个地方,我们又做了一些先验假设,假设非线性的滤波器的一阶统计量和二阶统计量都等于0,我们就可以把上面的优化问题进一步简化,就得到我们非常熟悉的方程,就是Wiener-Hopf方程。这个结果告诉我们,线性滤波器的比较好解跟传统的自适应滤波器的比较好解是一致的,都是Wiener-Hopf方程的理论比较好解。所以我们就可以采用一些现有的比较成熟的算法,比如NLMS算法、RLS算法,对它进行迭代求解。这就是Wl的设计。接下来再看看Wn的设计。Wn的设计跟Wl的设计是类似的,也是需要将优化之后的线性滤波器,代入到开始的优化问题里,可以把前面的优化问题简化成下面的方程。接下来进行一系列的变量替换之后。

    河北识别声学回声跟读非线性的声学回声消除问题是一个困扰了行业很多年的技术难题。

天津语音交互声学回声AEC算法,声学回声

可以准确快速的进行底噪测试。下图TWS耳机中的左耳,在喇叭播放空声源时,喇叭端有略微的电流声底噪,右耳无此不良现场,通过指南测控的标准声学测试系统进行左右耳TWS声学测试,可以在底噪测试步骤中检测到,有底噪异常的左耳的一些频段能量值偏高,无底噪问题的右耳的表现就“平顺”很多。再结合与更多正常品的对比和设定合理的limits,可以快速准确的检查出耳机在各种状态下的底噪不良。耳机回声回声来自于非预期的泄露,一般分为电学回声和声学回声。前者一般由于麦克风和扬声器线路布局不合理的电路耦合造成,后者则是由于麦克风和扬声器的声学泄露耦合而成。对于回声不良的耳机来说,在通话时,耳机喇叭播放的声音信号通过麦克风又传回电话另一头的手机,从而让讲话者听到自己的声音。对于耳机来讲,主要是声学回声,表现为收发环路的隔离度不好,其根本原因就是耳机在装配时麦克风与喇叭的密封隔离没做好,导致通话时回声出现的不良体验。图中的耳机,在通话时,人耳会略微的感受到回声,也就是佩戴人讲话的声音又传递到了耳机本身的喇叭后播放出来,也有会在通话对方的手机端出现回声现像影响双方的通话质量。指南测控的标准声学测试系统,根据回声传输路径。

    非线性声学回声消除技术,非线性的声学回声消除问题,在实际声学系统里面非常普遍也非常棘手,到目前为止还没有特别有效的办法来解决。目前介绍非线性声学回声消除的公开文献也少之又少。如何处理非线性声学回声消除的,效果又如何?将从非线性声学回声消除产生的原因、研究现状、技术难点出发,详细介绍双耦合的声学回声消除算法以及实验检验结果。我要讲的内容是《非线性声学回声消除技术》,之所以选择这样的方向,主要是基于两个方面的原因:非线性的声学回声消除问题是一个困扰了行业很多年的技术难题,这个问题在实际的声学系统里非常普遍,同时又很棘手,到目前为止,还没有特别有效的办法。我猜测大家应该会对这个课题感兴趣。还有另外一个原因,我之前做过一些技术的调研,在现有公开的文献资料里,介绍非线性声学回声消除方面的资料非常少,我想借这样一个机会,介绍一些我们团队在这个领域的进展,希望能够对大家后续的研究有一些帮助,同时也想跟各位**做一下技术交流。我介绍的内容包括四个部分,个部分什么是非线性声学回声,它产生的原理、研究现状以及技术难点等问题;第二个部分重点介绍双耦合声学回声消除算法。

    在构建滤波器模型的过程中结合了非线性声学回声的一些特性。

天津语音交互声学回声AEC算法,声学回声

这将不止产生一次的回声,而是多次规律的回声现象。AEC即AcousticEchoCancellation(声学回声消除)技术简称,该技术的出现旨在消除这种因远程网络会议所带来的回授现象,以遏制次回声产生所需的必要条件来遏制多次回声的出现。为什么要费那么大周折去抑制回声?这个话题应该不言而喻了。会议、语音扩声讲究的即是STI语音清晰度(可懂度),而回声是语言清晰度的比较大。设想踩脚跟式的语音信号传达到耳朵,听者难受,讲者费劲,对于这样的语音会议来说,那必将是一场灾难。我们把声学回声消除这个技术变成一张实体的插件(设备插卡),在系统中,为实现次回声过滤(过滤回声源则过滤多次回声)。这个技术应该插入在系统的哪个环节呢?我们不妨来找找系统中具备近乎相同/相似信号的一级进出环节。们并不难发现一组具备相似信号的输入输出环节。而AEC技术认为,在这里对回声下手是治根的办法!市面上有多种类的回声消除器,也有部分抑制器,其算法和解决办法各有不同,本文就不详细阐释了。须知,通过对具有相似性极高的输入、输出信号的比对,约掉这一具备相似信号的输出。AEC声学回声,电话的扬声器的声音。广东商显声学回声供应商

什么是非线性声学回声,它产生的原理、研究现状以及技术难点等问题。天津语音交互声学回声AEC算法

    在线性的回声场景里,双耦合的非线性滤波器是处于休眠的状态,所以它的值是趋于0的,这个时候起主导作用的是线性滤波器。接下来我们再看一下右边的非线性声学回声场景。我们假设非线性的失要出现在t1到t2这个时间段内,大家可以看到黄色线在这个时间里,出现了一次突变,对于NLMS算法,当出现非线性失真之后,它的线性滤波器会去逼近非线性失真。但是由于学习的速度跟不上滤波器变化的速度,所以它跟真实的值之间总是存在一个比较大的gap。同时当非线性失真消失之后,它还需要一段时间恢复到正常状态,因此在整个时间段里,都会出现回声泄露的问题。接下来我们再看双耦合算法,在非线性失真出现之后,线性滤波器会进入到一种相对休眠的状态,就是前面所提到的耦合机制,会降低它的更新速度,所以在整个非线性出现的这段时间里,他的值是缓慢变化的。进入非线性失真状态之后,非线性滤波器开始工作,它会快速非线性特性的变化,而当非线性失真消失之后,非线性滤波器又进入休眠状态。将这两个滤波器结合起来,就可以实现对整个声学回声路径的变化进行有效。这里只是给出了一个示例,实际情况往往要复杂很多。接下来我们对这2个滤波器做了特性比较,主要是从4个不同的维度。

     天津语音交互声学回声AEC算法

深圳鱼亮科技有限公司坐落于龙华街道清华社区建设东路青年创业园B栋3层12号,是集设计、开发、生产、销售、售后服务于一体,通信产品的服务型企业。公司在行业内发展多年,持续为用户提供整套智能家居,语音识别算法,机器人交互系统,降噪的解决方案。公司主要产品有智能家居,语音识别算法,机器人交互系统,降噪等,公司工程技术人员、行政管理人员、产品制造及售后服务人员均有多年行业经验。并与上下游企业保持密切的合作关系。Bothlent集中了一批经验丰富的技术及管理专业人才,能为客户提供良好的售前、售中及售后服务,并能根据用户需求,定制产品和配套整体解决方案。我们本着客户满意的原则为客户提供智能家居,语音识别算法,机器人交互系统,降噪产品售前服务,为客户提供周到的售后服务。价格低廉优惠,服务周到,欢迎您的来电!

信息来源于互联网 本站不为信息真实性负责